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Limits to resolution

In optics, many devices are inherently low pass

Super-resolution: Can we recover fine-grained structure from
coarse-grained measurements?

Applications in medical imaging, microscopy, astronomy, radar detection, geophysics, etc
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Super-resolution camera

Abbe limit = ~ 200 nm

2nsin(a)

Super-resolution imaging

2 The blurred images are processed using
probability theory in order to render them
much sharper.

The principle of
single-molecule
microscopy

The distance between each protein > 0.2 ym

Microscope

1 A weak light pulse

activates a fraction of all
the fluorescent proteins.
The distance between
them is greater than
Abbe’s diffraction limit of
0.2 micrometres. They
glow until bleached, at

which point the procedure
is repeated on a new
subgroup of proteins.

3 When all images are
superimposed a high
resolution totality
appears, wherein
individual proteins can
be discerned.

High-resolution
“_ image
Single
fluorescent -
protein
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Spatial Resolution of Biological Imaging Techniques
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A mathematical framework

Introduced by (Donoho ’91)

Super-position of k spikes, each f; € [0,1)

[ |

e@r= ) ;o ;%)

J

Measurement at low frequencies w, up to cutoff |w| < n
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An ancient algorithm

Prony’s method (Prony ’1795):

Proposition. When there is no noise (n, = 0), there is a polynomial time algorithm to recover the
(uj, fj)'s exactly with n = 2k + 1, i.e., measurements at

w=-k—-k+1,...,k—1k

Is it stable to noise?

Gaspard de Prony
(1755-1839)
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1d super-resolution: upper bound

Theorem (Moitra '2015; Li-Liao-Fannjiang ’20).

There is a polynomial-time algorithm for super-resolution if n = 1/A, and otherwise it is

statistically impossible. \
separation condition

Wrap-around distance d,,:

0

Oof BN
Q| =

A= min d,(f; f:
dw(7/8,1/8) — 1/4 j£j'e[k] W(f) f] )
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1d super-resolution: upper bound

Theorem (Moitra '2015; Li-Liao-Fannjiang ’20).

There is a polynomial-time algorithm to recover {(f], ﬁj)} K] such that

min max dy (fu(i) f) + [y — 1] < €

provided |n,| < poly(¢,1/n,1/k)andm > 1/A+ 1

> The estimates converge to the ground-truth at an inverse polynomial rate, in terms of the magnitude of
the noise
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1d super-resolution: lower bound

Theorem (Moitra ’'15).

Foranym < (1 — €)/A, there is a pair of A-separated signals x and X such that

k k

z ujezﬂlfjw . z ﬁjeszjw < 2—ek

j=1 j=1

for any |w| < n.

Lter 11l
L A

>
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History

Liao-Fannjiang '14:

Donoho '92: Algorithm for n

Asymptotic bound for = (1 + 0(4))/A with noise

n = 1/A on-grid

Moitra '14:

\Inmuml’ %ﬂ

. ‘ . Lower and upper bounds

Candes-Fernandez-Granda '12:
Convex program for n = 2/A no noise

Fernandez-Granda ’'13:

Convex program for n = 2 /A with noise
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The ESPRIT algorithm

Estimation of signal parameters via rotational invariance techniques

- Itis one of the most effective spectral estimation method in practice.

984 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH. AND SIGNAL PROCESSING. VOL. 17, NO. 7. JULY 108

ESPRIT—Estimation of Signal Parameters Via
Rotational Invariance Techniques

RICHARD ROY axp THOMAS KAILATH. F

of significance in man) ications.
tians include direction-of-arrival (DOA} estimation, system identifica
tion, and time series analysis. A novel approach (o the general problem
of signal parameter estim
context of direction-of-arrival
wide variety of problems including accurate detection and estimation
of sinusoids in noise. It exploits an underlying rotational invariance

imation, ESPRIT can be applied to a

e and computational advantages over pre-
ms such as MEM, Capon’s MLM, and MUSIC.

L. INTRODUCTION

N many practical signal processing problems, the ob-
jective is to estimate from measurements a set of con-
stant parameters upon which the received signals depend.
For example, high-resolution direction-of-arrival (DOA)
estimation is important in many sensor systems such as
radar, sonar, clectronic surveillance, and seismic explo-
ration, High-resolution frequency estimation is important
in numerous applications. rccent examples of which in-
¢lude the design and control of robots and large fexible
space structurcs. In such problems, the functional form of
the underlying signals can often be assumed 10 be known
fe.g., narrow-band plane waves, cisoids). The quantitics
to be cstimated are parameters (c.g.. frequencics and
DOA’s of plane waves., cisoid frequencies) upon which
the sensor outputs depend, and these parameters are as-
sumed to be constant

There have been several approaches to such problems
including the so-called maximum likelihood (ML) method
of Capon (1969) and Burg's (1967) maximum entropy
(ME) method. Although often successful and widely used.
these methods have certain fundamental limitations (es

Manuscript roceived January 12, 1988, revised Ociaber 5. 1988, This
work was supporied in part by the Jaint S<rvices Program at Stanford Uni
versity (LS. Army. U.S. Nuvy, U S. Air Foree) under Contraci DAAG29
85-K-0048, and the SDIIST Program managed by the Oftice of Naval Re-
scarch. under Contract NDODI4-85-K-0350.

The authors are with the Information Systems Luboratory, Stanford Uni
versity, Stanford. CA 94305
SE Log Number 8928123

in which the parameters may be time varying

however. they rely on me-seale or cigeralue

and the dynamics of the signal

5. Fu . the & ade that over time intervals

¢ <nough o cotleet sufficient infurmation from which to obtain accurate
parametcr cstimates. the parameters have not changed significantly

W, IEEE

pecially bias and sensitivity in parameter estimatcs),
largely because they use an incorrect model (e.g.. AR
rather than special ARMA) of the measurements. Pisa-
renko (1973) was one of the first to exploit the structure
of the data model, doing so in the context of estimation
of parameters of cisoids in additive noise using a covari-
ance approach. Schmidt (1977) and independently Bien-
venu (1979) were the first to correctly exploit the mea-
surement model in the case of sensor arrays of arbitrary
form. Schmidt, in particular, accomplished this by first
deriving a complete geometric solution in the absence of
noise, then cleverly extending the geometric concepts 1o
obtain a reasonable approximate solution in the presence
of noise. The resulting algorithm was called MUSIC
(MUltiple Slgnal Classification) and has been widely
studied. In a detailed evaluation based on thousands of
simulations, M.IT."s Lincoln Laboratory cencluded that,
among currently accepted high-resolution  algorithms,
MUSIC was thc most promising and a lcading candidate
for further study and actual hardware implementation.
However. although the performance advantages of MU-
SIC are substantial, they are achieved at a considcrable
cost in computation (searching over parameter spacc) and
storage (of array calibration data).

In this paper, a new algorithm (ESPRIT) that dramati-
cally reduces these computation and storage costs is pre-
sented. In the context of DOA estimation, the reductions
ate achieved by fequifing that the Sensor array possess &
displacement invariance, i.e., sensors occur in matched
pairs with identical displacement vectors. Fortunately,
there are many practical problems in which these condi-
tions are or can be satisfied. In addition to obtaining sig-
nal parameter estimates cfficiently, optimal signal copy
vectors for reconstructing the signals are elements of the
ESPRIT solution as well. ESPRIT is also manifestly more
robust (i.c., less sensitive) with respect to array imper-
fections than previous techniques including MUSIC [1].

To make the presentation as clear as possible, an at-
tempt is made to adhere to a somewhat standard notational
convention. Lowercase boldface italic charucters will
generally refer to vectors. Uppercase boldface italic char-
acters will generally refer 10 matrices. For either real- or
complex-valued matrices, (-)* will be used to denote the
Hermitian conjugate (or complex-conjugate transpose)
operation. Eigenvalues of square Hermitian matrices are
assumed to be ordered in decreasing magnitude, as are the

0096-3518/89/0700-0984501.00 © 1989 IEEE
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ESPRIT-estimation of signal parameters via rotational

invariance techniques

R Roy, T Kailath - IEEE Transactions on acoustics, speech, and signal ..., 1989

An approach to the general problem of signal parameter estimation is described.
The algorithm differs from its predecessor in that a total least-squares rather than
a standard least-...

¢ Y Cite Cited by 9394 Related articles All 7 versions
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The ESPRIT algorithm

Estimation of signal parameters via rotational invariance techniques

STEP 2: Eigen-decomposition of T

STEP 3: Comparing the sub-matrices of Q

September 21, 2025

T = (Cnxn

,@nxn

'\

_I_

Q = @nxn

A*: Moore—Penrose
pseudo-inverse



The ESPRIT algorithm

Estimation of signal parameters via rotational invariance techniques

STEP 4: eigen-decomposition of W

Let /11, 22, e ik be the eigenvalues of w

A A K
Output {f] = (arg/lj)/ZE}jzl as the estimated locations
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Why does ESPRIT work

) . . . . Yk w . vk 2Tif jw
Claim. When the signal is noise-free, i.e., g, = j=a Wiz = o Yye 7j® then the ESPRIT
algorithm can recover {Zj} exactly (up to a permutation)
Let z == (21,25, ..., Z;) and U == (Uq, Uy, ..., Uy)
The “clean” Toeplitz matrix T has a Vondermonde decomposition:
(90 g1 G2 v Gna| [ 1 1 17 u 111 zi! 272 e Z7mH
91 9o 91 "t 9n-2 21 22 Zk -1 -2 —n+1
—| ,2 2 2 Uz 1z~ z,% - 2z,
92 91 go v Gn-3|T| 4 2 Zk | | . : S :
- = = : a oo N wl |1 z0t z72 . gonit
gn-1 Gn-2 Gn-z - go | LTt T Z@T] KR T Tk ko
Va(2) diag(u) Vo(2)T

T =V, (2)-diag(n) -V, (2)T=Q-Z-Qt = Q, - X, - Q] (drop 0 eigenvalues)
= Range(Vn(z)) = Range(Q,)

September 21, 2025 12



Why the ESPRIT algorithm works

Range(Vn(z)) = Range(Q,.) implies that there exists an invertible P such that Q,, = V,,(z) P

The sub-matrices of the Vandermonde matrix has the following structure:

1 1 1 7 [z 1 1 4 Z7 o Zg T

2

Zl ZZ coe Zk . Z2 _ Z12 ZZZ eoe Zk
Vi(2)1 diag(z) Va(2)y

They imply that W is similar to diag(z):

W =QiQ, =Qf(V,(2),P) = QF (V,(2)diag(z))P
= Q7 (Q:P~1)diag(2)P
= P~ ldiag(z)P
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Noise stability of ESPRIT

T = QzQt . T=T+E =QQt
W =Q{Q, mmm) - W=0/0Q
eig(W) - eig(W)

Lemma (Li-Liao-Fannjiang '20; Ding-Epperly-Lin-Z. ’24). There exists a unitary matrix U such that
Q~QU and QfQ,=UTQ{QU

THEORY

PERTURBATION I Condition number Of the

Vondermonde matrix

G. W. Stewart
Ji-guang Sun
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Condition number bounds

Proposition.

Foranyu, ||V,,(2)u||? = (n — 1+ 1/A)||ul|?, provided thatn > 1/A + 1

Main technical tool: extremal functions

September 21, 2025 15



The Beurling-Selberg majorant

4 N

sgn(w)

B(w) sin(rw)\’ - 1 = 1 2
( n ) (J.Z)(w—j)z_jz_w(w—ﬂﬁz

Properties:
B(w) is an extremal function:

1)  sgn(w) < B(w)
B » Forany F(w) satisfying 1) and 2),
2)  B(t) supportedin [—1,1]
" J_B(w) —sgn(w) dw =1
3)  J__ B(w) —sgn(w)dw =1
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The Beurling-Selberg minorant

sgn(w)

b(w)

Properties:
1)  sgn(w) = b(w)
2)  b(t) supported in [—1,1]

(0]

3)  J__ sgn(w) — b(w)dw =1
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Approximate the indicator function of an interval

Corollary.
There are functions Crz(w) and cg(w) for E = [0, m — 1] that satisfy:
cg(w) < Ip(w) < Cp(w)

. Cz(t) and Cg (t) supported in [—A, A]

e 7 Co(w) - Ig(@)dow = [~ I;(w) - cp(w)dw = 1/A

September 21, 2025 18



Condition number bounds

Proposition.

Foranyu, [|[V,,(2)u||? = (n — 1 + 1/A)||ul|?, provided thatn > 1/A + 1

Proof.
IV (@ull* = X5261gw?
Let h(w) = X2 _ 6 (w) be the Dirac comb I I I I I I I I I I I I:

Then, we have

Zlgwlz j (@) @)lgo 120 < [ h(@)Cr@)Ig, de

= u;j U Jj h(a))CE(a))ezm(ff ") “dw
J)J E[k]

September 21, 2025 19



Condition number bounds

Proposition.

Foranyu, ||V,,(2)u||? = (n — 1+ 1/A)||ul|?, provided thatn > 1/A + 1

Proof.
IVa(@ull? = X526190 %

Let h(w) = X2 _ . 6p(w) = X2 _ o e2™Pt  (Fourier transform of a comb is a comb)

Then, we have

n-1
D 19012
w=0

f R(@)lg(@)]go |2 dw < f R()Cr ()] go [2de

S S = S T (10

_]_] E t_—OO j)j,lt
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Condition number bounds

Proposition.

Foranyu, [|[V,,(2)u||? = (n — 1 + 1/A)||ul|?, provided thatn > 1/A + 1

Proof.

n—1
Va@ull? < ) lgul? = 7 y wii s (fy — fr + )
w=0

J,J E ] t=—00

By the separation condition, f; — f; +t & [—A, A] for any integer t # 0

Hence,
IV, (@ull* < [[ull2Cz(0) = [[ull*(E| + 1/4) = |[ull*(n — 1+ 1/A)

Using by (w), we can show that
IVa@ull* = [lull*(n —1-1/4)
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Sharp phase transition of the condition number

Proposition.

If n = (1 — €)/A, then there exists a A-separated z such that V,,(z) has condition number 2(€k)

ill-conditioned —

>l
B> -

Main technical tool: Fejer kernel

September 21, 2025 22



Fejer kernel

L

1 .
K@) =75 ) (L—|eDe?mes

t=—L

B sin(wLlw) ?
=1/17 ( sin(rw) )

Properties:

AN Moot oo aaar] naeant] (neannl

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

7) K.(t) =0, supportedon{—L,—L +1,...,L —1,L},and sumto 1

11

forw € |— - —]
412 w2 2’2

2) K (w) <

September 21, 2025
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Sharp phase transition of the condition number

Proposition.

If n = (1 — €)/A, then there exists a A-separated z such that V,,(z) has condition number 2(€k)

Proof.

Let z; = e?™J2 for j € [k]. Our goal is to construct a vector u such that ||V, (2)u|| = 270 |||

LetL=H andr={%‘ sothat2rL + 1<k - - - - - -

o
>

. 20 3A f
Let a; == K] (t) for |t| < rL.Then, };a; =1

Define

o aj_p e MU imnA 0 < j < 27L
7o, 2rl <j <k
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Sharp phase transition of the condition number

Proposition.

If n = (1 — €)/A, then there exists a A-separated z such that V,,(z) has condition number 2(€k)

Proof.
. aj_p e TUTTLgmImnA, 0<j<2rL
7o, 2rL <j<k
lull, = 2¢ar = 1. Thus, [lull; = 1/Vk o <ZA nA + 1>
We have L 2
1
k-1 TrL ’ \

rL
iilA i i A i IA id(l 2nit(lA—nA+1)
(Vn (z)u)l — Z uj62n1] — 2 ate—mte—m(t+rL)n eZn1(t+rL) — elcp( ) 2 a.e >
j=0 t=—7L t=—7L
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Sharp phase transition of the condition number

Proposition.

If n = (1 — €)/A, then there exists a A-separated z such that V,,(z) has condition number 2(€k)

Proof.

_Naj_e7mUTTLeTImnA L0 < j < 2rL

0, 2rL <j <k

lull; = X¢ar = 1. Thus, [lull, = 1/Vk
We have
|((Va(Dw),| = K[ (IA— (nA+1)/2) < (4L%(e/4)?)7T

September 21, 2025 26



Sharp phase transition of the condition number

Proposition.

If n = (1 — €)/A, then there exists a A-separated z such that V,,(z) has condition number 2(€k)

Proof.

_Naj_e7mUTTLeTImnA L0 < j < 2rL

0, 2rL <j <k

lull, = X a; = 1. Thus, |lull, = 1/Vk
We have

(Vo (2w, | < (4L%(e/4)?) ™" = exp(—Q(r)) = exp(—Q(ek))
Therefore, ||V, (2)ul|l = exp(—Q(ek))
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Why “super-resolution”?

Physically, it means that we can resolve real-world objects bypassing the Abbe limit (= 200 nm)

In our setting, the signal is represented by a superposition of point sources,

k

X(®) = ) ey, (©

J=1

which should be understood as a purely mathematical idealization

The way to understand super-resolution is from the error scaling in terms of the number of

measurements

September 21, 2025 28



Error scaling of spectral estimation

To estimate the locations {f]} upto € error, how many measurements (n) do we need?

2mi(A+e)t

Nyquist scaling
Noiseless

|
0(6_1) n
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Error scaling of spectral estimation

To estimate the locations {f]} upto € error, how many measurements (n) do we need?

- “Super-resolution” means that the error scaling is asymptotically better than the Nyquist scaling (1/¢)

- What if the signal has larger noise?

: : iy 2 : : . :
Super-resolution scaling a2 Nyquist scaling Central-limit scaling
Noise ~ poly(€) o Noise ~ 0(1) Noise ~ 0(1)
|
| | | X
0(1/A) 0(e™b) 0(e™?) n
(Donoho '92; Candes-Romberg-Tao '06; (Price-Song ’15) (Li-Liao-Fannjiang '20)

Liao-Fannjiang '14; Moitra ’15; ...)
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Noisy super-resolution

An algorithm satisfies noisy super-resolution scaling if it can recover the locations up to error strictly
superior to the Nyquist error scaling, i.e., e = o(n™1).

September 21, 2025
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4 )
Is it possible to achieve a noisy super-resolution scaling for solving the spectral
estimation problem with bias and large measurement noise?

\. y,

K d
Jo = Z u;z" + z u;z’ + E,
signal bias random noise



Noisy super-resolution

An algorithm satisfies noisy super-resolution scaling if it can recover the locations up to error strictly
superior to the Nyquist error scaling, i.e., e = o(n™1).

(

N
Is it possible to achieve a noisy super-resolution scaling for solving the spectral
estimation problem with bias and large measurement noise?
y,
Optimal scaling! Nyquist scaling
| | ,

September 21, 2025

0(e-2/3) 0(e™)
(Ding-Epperly-Lin-Z.’24)
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ESPRIT for noisy super-resolution

Setup:
Let the dominant locations and intensities be z3, == (24, ..., Zx) and Ugom == (Uq, ..., Ug).

Let the tail locations and intensities be zZi ;) = (Zy+1, -+, Zg) and eai) == (Zi 41, ) Zg)-

WehaveT =T + E, E = Er.iy + Erandom, Where
T = Vn(zdom) ) diag(udom) ) Vn(zdom)-l-
Ei,i =V, (Zeait) - diag(eai) - Vi (Zeain)
E andom = Toep((EO: Ey, ..., En—l))

We use the matching distance to quantify the estimation error:

md(z,2) = 722152 fgf‘s),(( |Zi — Zn(i) |
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Assumptions

A. Separation of locations. All dominant locations are separated from each other and from non-dominant
locations:

A,:==  min _|zl- —zj| >0
1<i<k,1<j<d,i#]

B. Separation of intensities. We assume the cumulative intensity of non-dominant locations is bounded:

Utail *= Upq1 T Upg T+ Ug K Upjp = jnel[llg Uj

C. Random measurement noise. We assume that {Ej}je[d are independent complex random variables

]
with zero mean and a-sub-Gaussian tail decay (& > 0 is the noise level).

% gapless
A A, |

VVN

a

A 4
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Central limit error scaling of ESPRIT

Theorem.

Under Assumptions A-C, for sufficiently large cutoff frequency (n > 1/A,), with high probability, the
location estimation of the ESPRIT algorithm satisfies:

- a
d(z, =0
md(Z, Z4om,) (llr\/ﬁ>

It recovers the traditional super-resolution error scaling: setting the noise level @ = 0 (e - u,+/n) suffices to
achieve md(Z, z4,,) < € forany e > 0.

September 21, 2025 35



Optimal error scaling of ESPRIT

Theorem (Ding-Epperly-Lin-Z. '24).

Under Assumptions A-C, for sufficiently large n, with high probability, the location estimation of
the ESPRIT algorithm satisfies:

3 15,3
md(Z,Zgom) = 0 <M§A§'5n1'5>

And the intensity estimation satisfies:

~ T2'5a3
md(ﬂ; ﬂdom) =0 <M§A%5n05>
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Optimal error scaling of ESPRIT

Theorem (Ding-Epperly-Lin-Z. '24).

Under Assumptions A-C, for sufficiently large n, with high probability, the location estimation of
the ESPRIT algorithm satisfies:

3 15,3
md(Z,Zgom) = 0 (M?A%'5”1'5>

Proof roadmap

Upgrade with novel matrix

Central limit error perturbation results Optimal error

scaling scaling
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Key steps for proving the central limit scaling

Our goal is to prove that the eigenvalues of W = @}F@l are close to the eigenvalues of W = Q?Ql.
The key idea is to find a similarity transformation A = PAP~! to “align” W and W.

1. Establishing a quantitative estimate that relates Q, and Q-

Eigenvector comparison, weak estimate: There exists a unitary matrix U,. € C"*" such that

”Or - QrUr” ~1/4/n and ”Q?Ol - UIQ?_QLUr” ~1/yn
2 2

Main ingredients of the proof:

-  Bounds on the singular values of Vandermonde matrices (Moitra "15):
0;(Vy(Zgom)) EJn—142m/A, VI<i<T.

> Standard matrix perturbation theory (Stewart-Sun "90)

> Matrix concentration inequality: || Erandomll = 0 (a/1)
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Key steps for proving the central limit scaling

Our goal is to prove that the eigenvalues of W = Q}*@l are close to the eigenvalues of W = Q}*Ql.
The key idea is to find a similarity transformation A = PAP~! to “align” W and W.

1. Establishing a quantitative estimate that relates Q, and Q-

Eigenvector comparison, weak estimate: There exists a unitary matrix U,. € C"*" such that

”Or - QrUr” ~1/4/n and ”Q?Ql - UIQ'-TI_QJ,UT” ~1/yn
2 2

2. Converting eigenvector perturbations to ESPRIT’s estimation error:

From Q;“Ql bounds to location estimation: For any invertible, near-isometry matrix P, i.e.,
IP|l,, 1P, = 0(2),

i md(2, Zgom) % ||Q@F @, — P‘1Q}*Q¢P||2

> Taking P = U, yields the 0(n~%°) error scaling.

September 21, 2025 39



Towards the optimal error scaling

4 )
There exists an invertible, near-isometry matrix P

€ C"*" such that

|e7Q, —P'Q7Q.P|, ~n7"®
o J

Combined with the second step of the central limit scaling proof, we obtain the optimal n~ 1 scaling

- The matrix P is not unitary. We believe that if P is restricted to be unitary, then the best possible scaling
would be 1/+/n

- This result cannot be proven by directly using standard matrix perturbation theory results
We need:

- anovel eigenspace perturbation result
> a careful series expansion of PQ{ QP!

- the Toeplitz structure of the error terms in the perturbation
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Structure lemma on eigenspace perturbation

/

o

Q U, =

Q, + 2 HQJ- (EtallHQJ-) ErandomQr(z_l)k+1 + O(n_o 5) HQ Ql + O(n_l) QZ

\

There exists a unitary matrix U,. such that

second order term

g

first order terms

/

Here, Iy = Q. Q! is the projector onto the column space of Q,, M, =1, — Iy, and @, Q; are

matrices with O(1) spectral norm.

This lemma intuitively says that Q.- can be expressed as the sum of four parts (up to a unitary):

1.

2.

3.

4.

September 21, 2025

The eigenvectors Q,

A term of size 1/4/n that is orthogonal to Q..

A term of size 1/+4/n that is in the range of Q,

Second-order terms of size 1/n

41



Structure lemma on eigenspace perturbation

/

o

Q.U =

Q, + 2 HQJ- (Etalll-[QJ-) ErandomQr(z_l)k+1 + O(n_o 5) HQ Ql + O(n_l) QZ

There exists a unitary matrix U,. such that

second order term

g

¥

first order terms

/

Using this lemma, we can explicitly construct an invertible matrix P such that Q,,P~1 — Q. is almost

orthogonal to Q,, up to an error of size n

And the orthogonal parts will be approximately cancelled in ||PQ}F@¢P‘1 — Q;r

—-1.5

strong estimate for the eigenvector comparison.
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Interlude: perturbation theory via resolvents

Assume A = ZLl/liqiqzr ECY”and A+ E = Z?:ﬂiﬁﬁj be the perturbation.

Let C be a simple closed curve in C such that A4, ...,Ar,//lz, ,//1; are inside C and all other eigenvalues
are outside C.

Assume that [|[E(1 — A)~ || < 1forall ¢ € C.

Then, denoting IT = Y.7_, ql-qzr and I =Y7_, ?q\l-’q\zr, we have

_ =1 ) _
“:"J’;z_nii (&1 — A Y(E(EI — A)~Y)kde
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Expansion of spectral projector

(0]

Mg, =T, + ) ==& (&1—T)""(BET-T)™)kdg

k=1

T

Im A
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Evaluating the expansion

co

1
Mg, =Tlg, + ) =—=¢ (¢ -T)(EE - T)")rd¢
r r 21l J
k=1 r
= Mg, + Polyg, (T*, My, E)}
Y
An explicit formula for the contour integrals

> Expand the eigenvector projections within the integrals
> Combine the terms to form T™

> Simplify the expressions using Schur polynomials

A1+'l’1—1 /\]_Jrﬂ—l A1+1’1—1
L1 T2 o T 1]1]1] 1]1]1] 1
) mi2+ﬂ—2 33324-?1—2 m$g+ﬂ,—2 5 | 2 5
sa(@,. @) =[] (@ —2y) , _ ' ,
1<i<j<n : : . : 12|
E
T :r:;" :1‘:,*,_"
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Bounding the higher-order terms

oo

1
Mg, =Tlg, + ) ==& (&1—T)""(EET-T)™)*dg
r r 21l J
k=1 r
= Iy, + Polyg (T*, M., E)
=M, + z ((T+)"Erandoml'lq% (EMge) ™" + 1. c.) +0(1/n)
k=1

By connecting the angle between subspaces M. and Il to the distance between Q,and Q, (uptoa
unitary transformation), we prove the structure lemma:

-

There exists a unitary matrix U,. such that

Q.U =Q,+ znql(Etaﬂﬂql) Erandom@rEr )1 +0(n™%%) - My, Q1+ 0(n™')-Q,

k=0 second order term

N -

\ first order terms /
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Spectral estimation lower bound

Suppose there is an algorithm A that can estimate the locations within € error.

Consider the following one-sparse signals and noisy measurements:

z,=e gi=1+nN(01)

Zq = 1 g; — eZiEj 4+ N(O, 1)

|z; — z,| > €; thus, A should be able to distinguish these two signals.

To distinguish two Gaussians N'(1,1,,) and V' ((eZiEj), In) with constant success probability,
dry (W L)W ((29),1,)) < [|[1 = (9)], = 00 = @) = e<nts
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Recap

1-D super-resolution upper bound:

The ESPRIT algorithm

The Beurling-Selberg majorant and minorant to bound the condition number of Vandermonde matrix
1-D super-resolution lower bound:

Fejer kernel to construct ill-conditioned Vandermonde matrix
Extension to the high-noise regime

Optimal sample complexity

September 21, 2025 48



	Slide Number 1
	Limits to resolution
	Super-resolution camera
	A mathematical framework
	An ancient algorithm
	1d super-resolution: upper bound
	1d super-resolution: upper bound
	1d super-resolution: lower bound
	History
	The ESPRIT algorithm
	The ESPRIT algorithm
	The ESPRIT algorithm
	Why does ESPRIT work
	Why the ESPRIT algorithm works
	Noise stability of ESPRIT
	Condition number bounds 
	The Beurling-Selberg majorant
	The Beurling-Selberg minorant
	Approximate the indicator function of an interval
	Condition number bounds 
	Condition number bounds 
	Condition number bounds 
	Sharp phase transition of the condition number
	Fejer kernel
	Sharp phase transition of the condition number
	Sharp phase transition of the condition number
	Sharp phase transition of the condition number
	Sharp phase transition of the condition number
	Why “super-resolution”?
	Error scaling of spectral estimation
	Error scaling of spectral estimation
	Noisy super-resolution
	Noisy super-resolution
	ESPRIT for noisy super-resolution
	Assumptions
	Central limit error scaling of ESPRIT
	Optimal error scaling of ESPRIT
	Optimal error scaling of ESPRIT
	Key steps for proving the central limit scaling
	Key steps for proving the central limit scaling
	Towards the optimal error scaling
	Structure lemma on eigenspace perturbation
	Structure lemma on eigenspace perturbation
	Interlude: perturbation theory via resolvents
	Expansion of spectral projector
	Evaluating the expansion
	Bounding the higher-order terms
	Spectral estimation lower bound
	Recap

